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Abstract—We consider multiindex transportation problems of linear and integer linear pro-
gramming. As a method of solving them, we propose an approach based on reductions of
multiindex transportation problems to min-flow problems. We show that under the reduction
scheme we consider, the 2-embeddability condition for multiindex problems is a necessary and
sufficient condition for the problem to be reducible to a min-cost flow problem.
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1. INTRODUCTION

There exists a wide class of applied resource distribution problems formalized as multiindex
(integer) linear programming problems of transportation type. Examples of such problems include
(see [1–5]) problems of volume–calendar planning, data transmission channel power distribution,
natural gas mining and transportation, refining condensed natural gas, etc. Multiindex assignment
problems (a subclass of multiindex transportation integer linear programming problems) arise, for
instance, in scheduling theory [6, 7] and in computer vision [8, 9].

To solve multiindex transportation problems of linear programming, one can use general methods
like the simplex method or the Karmarkar algorithm [10, 11]. A number of works have been devoted
specifically to solving multiindex linear programming problems of transportation type. Two-index
problems have been studied the most [12]. Special subclasses of three- and four-index problems have
been considered, e.g., in [13–15]. In the general setting, the class of multiindex problems has been
studied in [13]. Conditions under which one can reduce dimension and/or reduce the number of
indices in multiindex transportation problems have been discussed in [16]. The geometric properties
of the set of admissible solutions for multiindex transportation systems of linear inequalities are
discussed in [14, 17, 18].

It is especially interesting to solve integer multiindex linear programming problems of trans-
portation type. It is known that the matrix of constraints for a two-index transportation problem
is absolutely unimodular, and the class of two-index integer linear programming problems is thus
solvable in polynomial time [12]. However, in the general setting the class of integer multiindex
transportation problems is NP-hard already in the three-index case [19]. Moreover, for problems
of this class there are no polynomial ε-approximating algorithms unless P = NP, and this result
also holds already for the three-index case [20]. If there are no additional restrictions on the pa-
rameters, only general integer linear programming algorithms, exponential in their computational
complexity, are applicable (e.g., the branch-and-bound method or the Gomory method [10, 21]).
Among integer multiindex transportation problems, the best studied class is the class of multiin-
dex assignment problems. A comprehensive survey of results related to complexity analysis and
approximate algorithms in special subclasses of multiindex assignment problems is given in [22]; in
addition to that, we note the works [23–25].
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MULTIINDEX TRANSPORTATION PROBLEMS WITH 2-EMBEDDED STRUCTURE 91

One promising direction in developing efficient algorithms for studying multiindex linear pro-
gramming problems is finding subclasses of problems to which flow methods can be applied. This
direction is influenced, importantly, by active studies in network optimization [26]. Existing efficient
flow algorithms (see [27, 28]) allow, when linear programming problems reduce to flow problems,
for algorithms that have lower computational complexity than general linear programming algo-
rithms. In a number of cases, reduction to flow problems also allows for an algorithm for the
original problem that is guaranteed to find an integer-valued solution and thus we are able to dis-
tinguish polynomially solvable subclasses of integer linear programming problems. The reducibility
of linear programming problems to flow problems has been studied in [29–32]; these works differ,
importantly, in the concepts of reduction used in each of them. The problem of reducing multi-
index transportation linear programming problems has been less extensively studied. It is known
that two-index problems reduce to flow problems [12]. The question of reducibility for multiindex
problems with an arbitrary number of indices has been considered in [1, 33, 34].

In the study of multiindex systems of linear inequalities, the concept of reducing a system
of linear inequalities to the problem of finding an admissible circulation was formulated in [34].
An important characteristic feature of this concept is the existence of a correspondence between
variables in the original systems of inequalities and simple cycles in the auxiliary network. The
proposed reduction scheme guarantees that an arbitrary admissible circulation in the auxiliary
network will define such an admissible solution in the original system of inequalities that variables
are assigned flow values along the corresponding simple cycles. The value of the flow along simple
cycles is defined via cyclic decomposition of the admissible circulation.

It has been shown in [1, 33] that special 2-embeddedness conditions on the set of subsets of
indices over which one sums in the problem’s system of constraints are sufficient (in case of three-
index problems, necessary and sufficient unless P = NP) for a reduction to the problem of finding
a min-cost flow. One characteristic feature of the reductions used in [1, 33] is that there exists
a correspondence between variables in the original problem and arcs in the auxiliary network.
The proposed reduction scheme guarantees that any optimal flow in the auxiliary network will
correspond to such an optimal solution for the original problem that the variables are assigned flow
values along the corresponding arcs in the network. If the 2-embeddedness conditions hold, solving
a multiindex linear programming problem of transportation type reduces to finding the minimal
cost flow in a network with O(n) vertices and O(n) arcs, where n is the number of variables in the
original problem.

In this work, we continue our study of reducing multiindex transportation problems to flow
problems in the general reduction paradigm proposed in [1, 33]. In Section 2, we give a formalization
of multiindex linear programming problems of transportation type and introduce the necessary
notation. Section 3 introduces the concept of reduction we use in this work. In Section 4 we
show that the 2-embedding condition is a necessary and sufficient condition for the reducibility
(under this reduction scheme) of multiindex transportation problems to the class of min-cost flow
problems. This result generalizes reducibility results shown in [1, 33] and gives (in the proposed
reduction scheme) an exhausting answer to the question of reducibility of a class of multiindex
problems to a class of min-cost flow problems. The resulting constructive reduction for multiindex
problems with 2-embedded structure is optimal in the sense that a reduction with asymptotically
lower computational costs is impossible, and an arbitrarily large increase in the computational cost
of the reduction does not let us extend the class of reducible multiindex problems.

2. MULTIINDEX TRANSPORTATION PROBLEMS

To pose multiindex linear programming problems of transportation type, we use a formaliza-
tion proposed in [13]. Let s ∈ N and N(s) = {1, . . . , s}. To each number l we assign a corre-
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sponding parameter jl, called an index, that takes values from the set Jl = {1, . . . , nl}, where
nl ≥ 2, l ∈ N(s). Let f = {k1, . . . , kt} ⊆ N(s); ki < ki+1, i = 1, t− 1. We call a set of values for
indices Ff = (jk1 , . . . , jkt)f a t-index. The set of all t-indices corresponding to f is defined as
Ef = {Ff |F ∈ Jk1 × . . .× Jkt}. We will omit the subscript f in the t-indices if it does not lead to
ambiguity. We denote the component ji of the set Ff as Ff (i) = ji, i ∈ f . Let f ′ ⊆ f ′′ ⊆ N(s);
then we denote Ff ′ = (Ff ′′)f ′ if Ff ′ ∈ Ef ′ , Ff ′′ ∈ Ef ′′ and Ff ′(i) = Ff ′′(i), i ∈ f ′. If Ff ′ ∈ Ef ′ ,
Ff ′′ ∈ Ef ′′ , where f ′, f ′′ ⊆ N(s) and f ′ ∩ f ′′ = ∅, then we denote by Ff ′Ff ′′ such a set that
Ff ′Ff ′′ ∈ Ef ′∪f ′′ and (Ff ′Ff ′′)f ′ = Ff ′ , (Ff ′Ff ′′)f ′′ = Ff ′′ . We further define f = N(s)\f ; then,
according to our notation, FN(s) = FfFf if Ff = (FN(s))f and Ff = (FN(s))f .

To each set Ff we assign a real number zFf
, Ff ∈ Ef . This mapping of the set of t-indices Ef

to the set of real numbers we call (similar to [13]) the t-index matrix, denoted by {zFf
}. For an

s-index matrix {zN(s)}, we introduce the following notation:

∑

Ff∈Ef

zFfFf
=

∑

jk1∈Jk1

∑

jk2∈Jk2
. . .

∑

jkt∈Jkt
zFf Ff

, Ff ∈ Ef .

This notation for the subsums of an s-index matrix will be used to formalize multiindex transporta-
tion problems.

Let M be a given set, M ⊆ 2N(s); {aF
f
}, {bF

f
}, given |f |-index matrices of free coefficients,

0 ≤ aF
f
≤ bF

f
, Ff ∈ Ef , f ∈ M ; {cFN(s)

}, a given s-index matrix of objective function coefficients;

{xFN(s)
}, an s-index matrix of unknowns. Then a multiindex linear programming problems of

transportation type is formalized as follows:

aF
f
≤

∑

Ff∈Ef

xFfFf
≤ bF

f
, Ff ∈ Ef , f ∈ M ; (1)

xFN(s)
≥ 0, FN(s) ∈ EN(s); (2)

∑

FN(s)∈EN(s)

cFN(s)
xFN(s)

→ min . (3)

We will denote problem (1)–(3) by w(s;M ;n1, n2, . . . , ns; {aF
f
}, {bF

j
}, f ∈ M ; {cFN(s)

}); the class

of all multiindex problems of the form (1)–(3) for a given set M , by W (M).

If w ∈ W (M) then we denote a constraint of the form (1) for problem w corresponding to a
fixed set f ∈ M and a fixed tuple Ff ∈ Ef by d(w, f, Ff ). We denote the matrix of the system of
constraints for problem w by Matr(w); the row of matrix Matr(w) defined by the two-sided in-
equality d(w, f, Ff ), by row(w, f, Ff ), Ff ∈ Ef , f ∈ M ; the column of matrix Matr(w) correspond-
ing to the variable xFN(s)

, by col(w,FN(s)), FN(s) ∈ EN(s). Suppose that we are given sequences

f (1), . . . , f (k1) ∈ M , F
(1)

f(1)
∈ E

f(1) , . . . , F
(k1)

f(k1)
∈ E

f(k1)
, F

(1)
N(s), . . . , F

(k2)
N(s) ∈ EN(s). Then we denote the

submatrix formed by elements of matrix Matr(w) on the intersection of rows row(w, f (i), F
(i)

f(i)
),

i = 1, k1 and columns col(w,F
(j)
N(s)), j = 1, k2, by Matr(w; (f (i), F

(i)

f(i)
), i = 1, k1; F

(j)
N(s), j = 1, k2).

3. REDUCTIONS

Let us formalize the concept of reduction that we will further use to study reducibility between
multiindex problems and flow algorithms.

Let A ∈ Rn×m, b, b−, b+ ∈ Rn, c ∈ Rm be fixed parameters; x ∈ Rm, the vector of unknowns. By
w(A, b, c) we denote the linear programming problem min{(c, x)|Ax ≤ b, x ≥ 0}; by w(A, b−, b+, c),
the linear programming problem min{(c, x)|b− ≤ Ax ≤ b+, x ≥ 0}. For convenience, we denote

AUTOMATION AND REMOTE CONTROL Vol. 74 No. 1 2013



MULTIINDEX TRANSPORTATION PROBLEMS WITH 2-EMBEDDED STRUCTURE 93

by nrow(A) and ncol(A) the number of rows and columns in matrix A respectively. We note that
problem w(A, b−, b+, c) can be described with a notation of the form w(A, b, c). Nevertheless, we
will use the notation w(A, b−, b+, c) in case when we want to emphasize that the problem’s system of
constraints is a system of two-sided inequalities. We will also consider integer linear programming
problems. If w = w(A, b, c) is a linear programming problem, by wZ we denote the integer linear

programming problem wZ = min{(c, x)|Ax ≤ b, x ∈ Z
ncol(A)
+ }. Let W be an arbitrary class of linear

programming problems; we define the corresponding class of integer linear programming problems
WZ = {wZ |w ∈ W}.

We further consider two classes of linear programming problems W ′ and W ′′. In essence, a
class W ′ is reducible to class W ′′ if for any problem w′ ∈ W ′ it is possible to construct a corre-
sponding problem w′′ ∈ W ′′ in such a way that the solution of problem w′′ determines the solution
of problem w′. When formalizing a specific reduction scheme, we will determine computational
costs and/or specific computational procedures related to:

—constructing the matrix of the system of constraints for problem w′′ by the original parameters
of problem w′;

—constructing free coefficients and objective function coefficients for problem w′′ by the original
parameters of problem w′;

—constructing a solution of problem w′ by a solution of problem w′′.
The notation for the reduction scheme proposed below is introduced similar to R. Graham’s notation
used to classify scheduling theory problems [35].

Definition 1. We say that a class W ′ is t1 − s1|t2 − s2|t3 − s3 reducible to class W ′′ if for every
problem w′ = w(A′, b′, c′) ∈ W ′ one can in time O(t1) construct the matrix A′′, in time O(t2)
construct the vectors b′′, c′′ such that w′′ = w(A′′, b′′, c′′) ∈ W ′′ and, moreover,

—problem w′ is feasible (bounded) if and only if problem w′′ is feasible (bounded);

—if an optimal (admissible) solution x′′ of problem w′′ is known then an optimal (admissible)
solution x′ of problem w′ can be constructed in time O(t3).

Here (−s1), (−s2), (−s3) are optional string notations for computational procedures related to con-
structing the matrix of the system of constraints, free coefficients and objective function coefficients,
and constructing the problem’s solution in general.

We call problem w′′ (see Definition 1) the problem corresponding to problem w′. Sometimes, for
convenience, we will replace computational complexity estimates t1, t2, t3 with L or P , meaning
respectively linear or polynomial functions in the size of an individual problem w′.

In this work, we study the possibility to reduce the class of multiindex linear programming
problems of transportation type to the class of problems of finding minimal cost flows defined as
follows. Consider a directed graph G = (VG, AG), AG ⊆ VG × VG, where VG and AG are the sets of
vertices and arcs of the graph G respectively. Let lij , uij denote the throughputs of the arc (i, j);
eij , the cost of an arc (i, j); xij, an unknown value of the flow along the arc (i, j), (i, j) ∈ AG. Then
by v(G; lij , uij , eij , (i, j) ∈ AG) we denote the following min-cost flow problem:

∑

j:(i,j)∈AG

xij −
∑

j:(j,i)∈AG

xji = 0, i ∈ VG,

lij ≤ xij ≤ uij , (i, j) ∈ AG,

xij ≥ 0, (i, j) ∈ AG,

∑

(i,j)∈AG

eijxij → min .
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We denote by Graph the set of all directed graphs. We define the class of problems of finding min-
cost flows as WGraph = {v(G, lij , uij , eij , (i, j) ∈ AG)|lij , uij ∈ Z+, eij ∈ Z, (i, j) ∈ AG, G ∈ Graph}.

Definition 2. Let W be a class of linear programming problems with a two-sided system of linear
inequalities. We say that a class W is t1|t2 − equal|t3 − edge reducible to a class WGraph if class W
is t1|t2|t3 reducible to class WGraph and an arbitrary problem w = w(A, b−, b+, c) ∈ W and its
corresponding problem v = v(G; lij , uij , eij , (i, j) ∈ AG) ∈ WGraph satisfy the following conditions:
there exist such injective functions α : {1, . . . , nrow(A)} → AG, β : {1, . . . , ncol(A)} → AG, that

—lα(i) = b−i , uα(i) = b+i , i ∈ {1, . . . , nrow(A)}; l(u,v) = 0, uuv = b∗, (u, v) ∈ AG\{α(i)|i ∈
{1, . . . , nrow(A)}}, where b∗ =

∑nrow(A)
k=1 b+k ;

—eβ(i) = ci, i ∈ {1, . . . , ncol(A)}; euv = 0, (u, v) ∈ AG\{β(i)|i ∈ {1, . . . , ncol(A)}};
—if xij, (i, j) ∈ AG, is an optimal (admissible) solution of problem v then (xβ(1), xβ(2), . . . ,
xβ(ncol(A))) will be an optimal (admissible) solution of problem w.

Remark. For b∗ one can use any sufficiently large value that would be equivalent to no upper
bound on the throughput in an arc.

Thus, according to Definition 2, in case class W is t1|t2 − equal|t3 − edge reducible to class
WGraph we guarantee that if w ∈ W , v = v(G; lij , uij , cij , (i, j) ∈ AG) ∈ WGraph and v is the
problem corresponding to problem w, then in constructing the min-cost problem v the throughputs
and costs of arcs in the problem are defined via the coefficients of problem w, and the solution of
problem w is found via a subset of components of a solution of problem v. Then we can propose
an algorithm for solving problem w which is based on the solution of the corresponding problem v
with computational complexity O(t1 + t2 + t3 +μ(|VG|, |AG|)), where μ(n,m) is the computational
complexity of the algorithm for solving a min-cost flow problem in a network with n vertices and
m arcs. A survey of computational complexity estimates for known flow algorithms can be found,
e.g., in [27, 28]. Further, in this work we consider the conditions under which the class W (M) is
t1|t2 − equal|t3 − edge reducible to class WGraph.

4. REDUCIBILITY CONDITIONS FOR MULTIINDEX PROBLEMS

The form of linear programming problems in class W (M) is defined by the given set M . There-
fore, the problem is to find the conditions that a set M has to satisfy in order for a solution of a
problem from the class W (M) to allow finding with flow algorithms.

Theorem 1. Let M ⊆ 2N(s). If a class W (M) is t1|t2−equal|t3−edge reducible to class WGraph

then for an arbitrary problem w ∈ W (M) the matrix Matr(w) is absolutely unimodular.

Proof by contradiction. Suppose that class W (M) is t1|t2 − equal|t3 − edge reducible to class
WGraph, and there exists a problem w ∈ W (M) such that the matrix Matr(w) is not absolutely
unimodular. According to [36], the absolute unimodularity condition of the matrix is necessary and
sufficient for all vertices in the polyhedron of the corresponding feasible system of linear inequal-
ities to be integer-valued. Therefore, there exists a problem w′ ∈ W (M) satisfying the following
conditions:

—Matr(w′) = Matr(w);

—free coefficients in problem w′ are integers;

—the system of constraints in problem w′ is feasible;
—problem w′ has a single optimal solution, and it is not integer.

The class W (M) is t1|t2 − equal|t3 − edge reducible to class WGraph. Then consider the problem
v ∈ WGraph corresponding to problem w′. By Definition 2, network throughputs in the min-cost
flow problem v are integer-valued. The matrix of system of constraints in problem v is absolutely
unimodular, so problem v has an integer optimal solution. Then, by Definition 2, problem w′ also

AUTOMATION AND REMOTE CONTROL Vol. 74 No. 1 2013



MULTIINDEX TRANSPORTATION PROBLEMS WITH 2-EMBEDDED STRUCTURE 95

has an integer optimal solution. We have arrived at a contradiction, which completes the proof of
the theorem.

Definition 3. A set M , M ⊆ 2N(s), is called k-embedded if there exists a partition of the set M

into k subsets Mi = {f (i)
1 , . . . , f

(i)
mi}, i = 1, k, such that f

(i)
j ⊆ f

(i)
j+1, j = 1,mi − 1, i = 1, k.

Previously we have found the following sufficient reducibility conditions.

Theorem 2 [1]. Let M ⊆ 2N(s). In order for the class W (M) to be L|L−equal|L−edge reducible
to class WGraph it is sufficient for the set M to be 2-embedded.

A constructive way of proving Theorem 1, proposed in [1], for the case of 2-embeddedness
of the set M lets on, for each problem w ∈ W (M), to construct the corresponding problem
v = v(G; lij , uij , eij , (i, j) ∈ AG) ∈WGraph. Here |VG| = O(|EN(s)|), |AG| = O(|EN(s)|), where the
value |EN(s)| coincides with the number of variables in problem w. By Definition 2, in case of
L|L− equal|L− edge reducibility the construction of the corresponding flow problem and finding a
solution of the original problem by the solution of the corresponding problem both take linear time.
Let μ(n,m) be the computational complexity of solving the min-cost flow problem in a network
with n vertices and m arcs. Then we can formulate the following corollary.

Corollary 1. Let M ⊆ 2N(s). If the set M is 2-embedded then the class of problems W (M) is
solvable in time O(μ(|EN(s)|, |EN(s)|)).

It is known [26] that the min-cost flow problem (admissible flow problem) in a network with two-
sided throughputs with n vertices and m arcs reduces to finding a min-cost flow with a given value
(max-flow problem) in a network with single-sided throughputs with O(n) vertices and O(n +m)
arcs. We use the Orlin algorithm proposed in [27] to find the min-cost flow of a given value. To find
the maximal flow, we use the Goldberd–Rao algorithm [28]. Then, by Corollary 2, if the set M is
2-embedded then there exist algorithms for finding an optimal and admissible solution of problem
w ∈ W (M) that require O(|EN(s)|2 log2 |EN(s)|) and O(|EN(s)|2 log |EN(s)|) computational opera-
tions respectively. This approach is also suitable for solving a class of integer-valued multiindex
problems WZ(M).

We further show that the 2-embedding condition is necessary and sufficient for a multiindex
transportation problem to be reducible to a min-cost flow problem.

Definition 4. Let M ⊆ 2N(s) and g ⊆ N(s); then we denote M(g) = {f ∩ g|f ∈ M}.
Definition 5. Let s1 ≤ s2 and M1 ⊆ 2N(s1), M2 ⊆ 2N(s2). Then we denote M1 ≺M2 if there exists

a subset g⊆N(s2), |g|= s1 and a bijection π: g→N(s1) such that M1 ⊆ ∪f∈M2(g){{π(i)|i ∈ f}}.
In essence, Definition 5 means that if we “ignore” the indices from the set N(s2)\g, for every

problem from class W (M2) there exists an equivalent (up to renumerating the indices π) problem
from class W (M1).

Lemma 1. Let s1 ≤ s2, M1 ⊆ 2N(s1), M2 ⊆ 2N(s2), and M1 ≺ M2. Then, if there exists a
problem w1 ∈ W (M1) such that the matrix Matr(w1) is not absolutely unimodular then there exists
a problem w2 ∈ W (M2) such that matrix Matr(w2) also is not absolutely unimodular.

Proof. Suppose that the lemma’s conditions hold. Then, by Definition 5, there exists a subset
g ⊆ N(s2), |g| = s1 and a bijection π : g → N(s1) such that M1 ⊆ ∪f∈M2(g){{π(i)|i ∈ f}}.

Let us show that for every problem w1 ∈ W (M1) there exists a problem w2 ∈ W (M2) such that
Matr(w1) is a submatrix of Matr(w2). Consider an arbitrary problem w1 ∈ W (M1), w1 = w(s1;
n′
1, . . . , n

′
s1 ; {a′Ff

}, {b′F
f
}, f ∈ M1; {c′FN(s1)

}) and choose w2 ∈ W (M2), w2 = w(s2;n
′′
1, . . . , n

′′
s2 ;

{a′′F
f
}, {b′′F

f
}, f ∈ M2; {c′′FN(s2)

}) such that n′
π(i) = n′′

i , i ∈ g. Then consider an arbitrary row

row(w1, f1, Ff1
) of matrix Matr(w1). The row row(w1, f1, Ff1

) can also be specified as a subma-
trix Matr(w1; f1, Ff1

;FN(s1) ∈ EN(s1)). Choose f2 ∈ M2 in such a way that f1 = {π(i)|i ∈ f2 ∩ g}
AUTOMATION AND REMOTE CONTROL Vol. 74 No. 1 2013
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and choose Ff2
∈ Ef2

such that Ff2
(i) = Ff1

(π(i)), i ∈ f2 ∩ g and Ff2
(i) = 1, i ∈ f2\g. In

the matrix row row(w2, f2, Ff2
), consider elements located on the intersection with the

columns {col(w2, FN(s2))|FN(s2) = Fg(1, . . . , 1)ḡ, where Fg ∈ Eg}. We see that the matri-
ces Matr(w1; (f1, Ff1

);FN(s1) ∈ EN(s1)) and Matr(w2; (f2, Ff2
);Fg(1, . . . , 1)g, Fg ∈ Eg) of size

1× |EN(s1)| coincide up to a permutation of columns given by the function π. Therefore, ma-
trix Matr(w1) is a submatrix of Matr(w2).

Consequently, if there exists a problem w1 ∈ W (M1) such that the matrix Matr(w1) is not
absolutely unimodular (i.e., contains a minor other than 0, 1,−1), then there exists a problem
w2 ∈ W (M2) such that Matr(w2) also contains a minor other than 0, 1,−1. This completes the
proof of the lemma.

Lemma 2. Let M ⊆ 2N(s). If one of the following three conditions holds :

(1) s = 3, M = {{1, 2}, {1, 3}, {2, 3}},
(2) s = 3, M = {{1}, {2}, {3}},
(3) s = 4, M = {{1, 2}, {2, 3}, {1, 4}},

then there exists w ∈ W (M) such that matrix Matr(w) is not absolutely unimodular :

Proof. (1) Let s = 3, M = {{1, 2}, {1, 3}, {2, 3}}. By definition, n1, n2, n3 ≥ 2, so we choose an
arbitrary problem w ∈ W (M) and consider its submatrix

H = Matr(w;

({1,2},(1){3}),({1,3},(1){2}),({2,3},(1){1});

(1,1,2)N(3), (1,2,1)N(3), (2,1,1)N(3)).

We see that H =

⎛

⎜⎝
0 1 1
1 0 1
1 1 0

⎞

⎟⎠ and detH = 2.

(2) Let s = 3, M = {{1}, {2}, {3}}. Consider an arbitrary problem w ∈ W (M) such that
n1, n2, n3 ≥ 3 and consider its submatrix

H = Matr(w;

({1},(1,3){2,3}),({1},(2,2){2,3}),({1},(2,3){2,3}),

({3}, (1, 1){1,2}),({3},(2,2){1,2})),

({2},(1,2){1,3}),({2},(3,3){1,3});

(1,1,2)N(3), (1,1,3)N(3), (1,2,2)N(3), (2,2,2)N(3),

(2,2,3)N(3), (3,1,3)N(3), (3,2,3)N(3)).

We see that H =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 1 0

0 0 1 1 0 0 0

0 0 0 0 1 0 1

1 1 0 0 0 0 0

0 0 0 1 1 0 0

1 0 1 0 0 0 0

0 0 0 0 0 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and detH = 2.

AUTOMATION AND REMOTE CONTROL Vol. 74 No. 1 2013



MULTIINDEX TRANSPORTATION PROBLEMS WITH 2-EMBEDDED STRUCTURE 97

(3) Let s = 4, M = {{1, 2}, {2, 3}, {1, 4}}. By definition, n1, n2, n3 ≥ 2, so choose an arbitrary
problem w ∈ W (M) and consider its submatrix

H = Matr(w;

({1,2},(1,1){3,4}),({2,3},(1,1){1,4}),({2,3},(1,2){1,4}),
({1, 4}, (1, 1){2,3}),({1,4},(1,2){2,3});
(1,1,1,2)N(4), (1,1,2,1)N(4), (1,1,2,2)N(4), (1,2,1,1)N(4), (2,1,1,1)N(4)).

It is easy to see that H =

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 1 1
0 1 0 1 0
1 0 1 0 0
1 0 0 0 1
0 1 1 0 0

⎞

⎟⎟⎟⎟⎟⎠
and detH = −2. This completes the proof of the

lemma.

Remark. Matrices used to prove Lemma 2 have been obtained with a parallelized program
developed by a student A.S. Katerov [37]. The software was run on the supercomputer of the
collective use computational center at FGUP “RFYATS–VNIIEF.”

Lemma 3. Let M ⊆ 2N(s). In order for the set M to be 1-embedded it is necessary and sufficient
that for every f1, f2 ∈ M there exist k, l ∈ {1, 2}, k 
= l, such that fk ⊆ fl.

Proof. Necessity proof. Let the set M be 1-embedded. Then, according to Definition 3, the

set M can be represented as follows: M = {f (1)
1 , . . . , f

(1)
m1}, where f

(1)
j ⊆ f

(1)
j+1, j = 1,m1 − 1.

Consider arbitrary j1, j2 ∈ {1, . . . ,m1}. If j1 ≤ j2 then f
(1)
j1

⊆ f
(1)
j2

, otherwise f
(1)
j2

⊆ f
(1)
j1

.

Sufficiency proof. Suppose that for every f1, f2 ∈ M there exist k, l ∈ {1, 2}, k 
= l, such
that fk ⊆ fl. We reorder the elements of M in the nondescending order of their sizes, M =
{ft1 , . . . , ft|M|}, |ftj | ≤ |ftj+1 |, j = 1, |M | − 1. Since ftj 
= ftj+1 and |ftj | ≤ |ftj+1 |, we get ftj+1 
⊂ftj ,

and then, by assumption, ftj ⊆ ftj+1 , j = 1, |M | − 1. By Definition 3, the set M is 1-embedded.
This completes the proof of the lemma.

Theorem 3. Let M ⊆ 2N(s). In order for the set M to be 2-embedded it is necessary and sufficient
that for every f1, f2, f3 ∈ M there exist k, l ∈ {1, 2, 3}, k 
= l, such that fk ⊆ fl.

Proof. Necessity proof. Suppose that the set M is 2-embedded; then, by Definition 3, there

exists a partition of the set M into 2 subsets M1 = {f (1)
1 , . . . , f

(1)
m1}, M2 = {f (2)

1 , . . . , f
(2)
m2} such

that f
(i)
j ⊆ f

(i)
j+1, j = 1,mi − 1, i = 1, 2. Consider arbitrary f1, f2, f3 ∈ M. There exist k, l ∈

{1, 2, 3}, k 
= l and t ∈ {1, 2} such that fk, fl ∈ Mt. If |fk| ≤ |fl| then fk ⊆ fl, otherwise fl ⊆ fk.

Sufficiency proof. Suppose that for every f1, f2, f3 ∈ M there exist k, l ∈ {1, 2, 3}, k 
= l,
such that fk ⊆ fl. We give a constructive proof, showing an algorithm for finding the partition

M1 = {f (1)
1 , . . . , f

(1)
m1}, M2 = {f (2)

1 , . . . , f
(2)
m2} of the set M such that f

(i)
j ⊆ f

(i)
j+1, j = 1,mi − 1,

i = 1, 2.

We reorder elements of the set M in nondescending order of their sizes, M = {g1, . . . , g|M |},
|ftj | ≤ |ftj+1 |, j = 1, |M | − 1. The algorithm is as follows.

Step 1. Let M1,M2 := ∅, j := 1. Goto 2.

Step 2. Reorder elements of the sets M1, M2 in nondescending order of their sizes M1 =

{f (1)
1 , . . . , f

(1)
m1}, M2 = {f (2)

1 , . . . , f
(2)
m2}, where f

(i)
k ≤ f

(i)
k+1, k = 1,mi − 1, i = 1, 2. If j > |M | the

algorithm is over; otherwise goto 3.

Step 3. If there exists l ∈ {1, 2} such that f
(l)
ml ⊆ gj then Ml := Ml ∪ {gj}, j := j + 1, goto 2;

otherwise, goto 4.
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Step 4. Denote Il = {f (l)
i |f l

s 
⊂gj , s = i,ml, i ∈ {1, . . . ,ml}}, i∗l = min
i|f(l)

i ∈Il i, l = 1, 2. Consider

the set I = I1 ∪ I2 and reorder its elements in nondescending order of their sizes I = {q1, . . . , q|I|},
|qs| ≤ |qs+1|, s = 1, |I| − 1. Let

t =

{
1, if q1 ∈ I1
2, if q1 ∈ I2,

r =

{
1, if q1 /∈ I1
2, if q1 /∈ I2.

Then Mt := Ir ∪Mt, Mr := {gj} ∪Mr\Ir, j := j + 1, goto 2.

Let us show that the resulting algorithm is correct. By construction, by the beginning of each
of Steps 2 it holds that M1 ∩ M2 = ∅, and the next element gj is added either to M1 or to M2.
Thus, after the algorithm is over M1, M2 represent a partition of the set M . Let us further show
that before each of Steps 2 the sets M1, M2 are 1-embedded.

Initially M1,M2 = ∅, and by Definition 3 they are 1-embedded. Let Mi = {f (i)
1 , . . . , f

(i)
mi},

f
(i)
j ⊆ f

(i)
j+1, j = 1,mi − 1, i = 1, 2. If on Step 3 there exists l ∈ {1, 2} such that f

(l)
ml ⊆ gj then

Ml := Ml ∪ {gj}, and since f
(l)
j ⊆ f

(l)
j+1, j = 1,ml − 1, the set Ml is 1-embedded. In case of going

on to Step 4 it holds that f
(1)
m1 , f

(2)
m2 
⊂gj , so f

(1)
m1 ∈ I1, f

(2)
m2 ∈ I2, and, therefore, I1, I2 
= ∅ and there

exist values i∗1, i∗2. Schematically, the sets M1 and M2 can be represented as shown on Fig. 1 (here
elements of the 1-embedded set Mi\Ii are subsets of elements of the 1-embedded set Ii, i = 1, 2):
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1
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1
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I

 

1

 

I

 

2

 

M

 

2
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I
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Fig. 1.

By construction, q 
⊂ gj , q ∈ I . On the other hand, according to the algorithm above |gj | ≥ q,
q ∈ I, so gj 
⊂ q, q ∈ I. Consider arbitrary q′ ∈ I1, q

′′ ∈ I2. As we have already shown, gj 
⊂ q′, q′′

and q′, q′′ 
⊂ gj , then by the assumptions of the lemma one of the following relations hold: q′ ⊆ q′′

or q′′ ⊆ q′. Therefore, by Lemma 3 the set I is 1-embedded, and qs ⊆ qs+1, s = 1, |I| − 1. By

construction, q1 ∈ It. Further, eitherMt\It = ∅ orMt\It = {f (t)
1 , . . . , f

(t)
i∗t−1}, and f

(t)
i∗t−1 ⊆ f

(t)
i∗t

= q1.

Therefore, the constructed set Mt := I ∪ Mt\It is 1-embedded. Further, either Mr\Ir = ∅ or

Mr\Ir = {f (r)
1 , . . . , f

(r)
i∗r−1}, and by construction f

(r)
i∗r−1 ⊆ gj . Therefore, the constructed set Mr :=

{gj} ∪Mr\Ir is 1-embedded. Sets M1 and M2 constructed on Step 4 are schematically shown on
Fig. 2 (here elements of the 1-embedded set Mt\It are subsets of elements of the 1-embedded set
Ir ∪ It, and elements of the 1-embedded set Mr\Ir are subsets of the set gj):
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Fig. 2.
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Consequently, after the algorithm has finished the constructed sets M1, M2 represent a partition
of the set M and are 1-embedded. This completes the proof of the theorem.

Consider arbitrary sets f1, f2, f3 ⊆ N(s) for which the following condition holds:

f1 
⊂ f2, f3, f2 
⊂ f1, f3, f3 
⊂ f1, f2. (4)

Condition (4) holds if and only if there exist elements aij ∈ N(s), j ∈ {1, 2, 3}\{i}, i ∈ {1, 2, 3},
such that

a12 ∈ f1, a12 /∈ f2, a21 ∈ f2, a21 /∈ f1, a31 ∈ f3, a31 /∈ f1,

a13 ∈ f1, a13 /∈ f3, a23 ∈ f2, a23 /∈ f3, a32 ∈ f3, a32 /∈ f2.

We will call the set A= {aij |aij ∈ fi, aij /∈ fj, j ∈ {1, 2, 3}\{i}, i ∈ {1, 2, 3}} a dividing set for f1,f2,f3.
We denote by A(f1, f2, f3) the set of all sets dividing f1, f2, f3. Theorem 3 together with the notion
of a dividing set imply the following corollary.

Corollary 2. Let M ⊆ 2N(s). In order for the set M to be 2-embedded it is necessary and
sufficient that A(f1, f2, f3) = ∅ for any f1, f2, f3 ∈ M .

If A∈A(f1, f2, f3), A= {aij |aij ∈ fi, aij /∈ fj, j ∈ {1, 2, 3}\{i}, i∈ {1, 2, 3}}, then by p(A) we will
denote the value

p(A) = |{a12} ∪ {a13}|+ |{a21} ∪ {a23}|+ |{a31} ∪ {a32}|.

Let d∗(f1, f2, f3) = minA∈A(f1,f2,f3) |A|. Then consider the problem of choosing, among the sets
dividing f1, f2, f3, a set of size d∗(f1, f2, f3) with maximal value of p(A):

A∗(f1, f2, f3) = argmax
A∈A(f1,f2,f3)|d∗(f1,f2,f3)=|A|

p(A). (5)

A solution A∗(f1, f2, f3) of problem (5) possesses the following important property.

Lemma 4. Let f1, f2, f3 ⊆ N(s), A(f1, f2, f3) 
= ∅ and A∗(f1, f2, f3) = {a∗ij |a∗ij ∈ fi, a
∗
ij /∈ fj,

j ∈ {1, 2, 3}\{i}, i ∈ {1, 2, 3}}. If a∗ij ∈ fk then a∗ij = a∗kj, where i, j, k ∈ {1, 2, 3}, i 
= j, i 
= k,
j 
= k.

Proof by contradiction. Suppose that conditions of the lemma hold, and there exist i, j, k ∈
{1, 2, 3}, i 
= j, i 
= k, j 
= k, such that a∗ij ∈ fk, but a∗ij 
= a∗kj. Consider the set A′ = {a′st| s ∈
{1, 2, 3}\{t}, t ∈ {1, 2, 3}}, constructed as follows:

a′ij = a∗ij , a′ji = a∗ji, a′ki = a∗ki,

a′ik = a∗ik, a′jk = a∗jk, a′kj = a∗ij.

By assumption a′kj = a∗ij ∈ fk, here by construction we have a′kj = a∗ij /∈ fj. Therefore, a′st ∈ fs,
a′st /∈ ft, t ∈ {1, 2, 3}\{s}, s ∈ {1, 2, 3} and A′ ∈ A(f1, f2, f3). Let us show the proof by considering
the following two possible cases.

(1) Let a∗kj = a∗ki. Since a′ki = a∗ki = a∗kj, a
′
kj = a′ij = a∗ij, we get that |A′| =

|{a′ij} ∪ {a′ik} ∪ {a′ji} ∪ {a′jk} ∪ {a′ki} ∪ {a′kj}|
=|{a′ij} ∪ {a′ik} ∪ {a′ji} ∪ {a′jk} ∪ {a′ki}|
=|{a∗ij} ∪ {a∗ik} ∪ {a∗ji} ∪ {a∗jk} ∪ {a∗ki}|
=|{a∗ij} ∪ {a∗ik} ∪ {a∗ji} ∪ {a∗jk} ∪ {a∗ki} ∪ {a∗kj}| = |A∗(f1, f2, f3)|.
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By construction, a′kj = a∗ij ∈ fi and a′ki = a∗ki /∈ fi, and thus, a′kj 
= a′ki. By assumption, a∗kj = a∗ki.
Therefore, p(A′) =

|{a′ij} ∪ {a′ik}|+ |{a′ji} ∪ {a′jk}|+ |{a′ki} ∪ {a′kj}|
=|{a∗ij} ∪ {a∗ik}|+ |{a∗ji} ∪ {a∗jk}|+ 2

and p(A∗(f1, f2, f3)) =

|{a∗ij} ∪ {a∗ik}|+ |{a∗ji} ∪ {a∗jk}|+ |{a∗ki} ∪ {a∗kj}|
=|{a∗ij} ∪ {a∗ik}|+ |{a∗ji} ∪ {a∗jk}|+ 1.

Consequently, p(A′) = p(A∗(f1, f2, f3)) + 1, and we have arrived at a contradiction.

(2) Let a∗kj 
= a∗ki. By assumption, a∗kj 
= a∗ij. By construction, a∗kj ∈ fk and a∗ik /∈ fk, then
a∗kj 
= a∗ik. Further, by construction a∗kj /∈ fj, a

∗
ji, a

∗
jk ∈ fj, so a∗kj 
= a∗ji, a∗jk. Therefore, |A′| =

|{a′ij} ∪ {a′ik} ∪ {a′ji} ∪ {a′jk} ∪ {a′ki} ∪ {a′kj}|
=|{a′ij} ∪ {a′ik} ∪ {a′ji} ∪ {a′jk} ∪ {a′ki}|
=|{a∗ij} ∪ {a∗ik} ∪ {a∗ji} ∪ {a∗jk} ∪ {a∗ki}|
=|A∗(f1, f2, f3)\{a∗kj}| = |A∗(f1, f2, f3)| − 1.

We have arrived at a contradiction, so our assumption was false. This completes the proof of the
lemma.

Lemma 5. Let M ⊆ 2N(s). If the set M is not 2-embedded then there exists a problem w ∈ W (M)
such that matrix Matr(w) is not absolutely unimodular.

Proof. Suppose that the set M ⊆ 2N(s) is not 2-embedded. Then, by Corollary 2, there exist
f1, f2, f3 ∈ M such that A(f1, f2, f3) 
= ∅. Consider the set A∗(f1, f2, f3) = {a∗ij |a∗ij ∈ fi, a

∗
ij /∈ fj,

j ∈ {1, 2, 3}\{i}, i ∈ {1, 2, 3}}, that represents a solution of problem (5). We will schematically
represent possible combinations of the set A∗(f1, f2, f3) as a graph Gf with the set of vertices
V = {ij| j ∈ {1, 2, 3}\{i}, i ∈ {1, 2, 3}} and the set of arcs {(ij, kl)|a∗ij = a∗kl, ij 
= kl, ij, kl ∈ V }.
We show the proof by considering the following two possible cases.

(1) Suppose that for every i ∈ {1, 2, 3} there exists such ti ∈ {1, 2, 3}\{i} that a∗iti /∈ fki, where
ki ∈ {1, 2, 3}\{i, ti}. Consider the elements a∗1t1 , a

∗
2t2 , a

∗
3t3 . By construction,

a∗1t1 /∈ f2, f3 a∗2t2 /∈ f1, f3 a∗3t3 /∈ f1, f2.

Then the subgraph of graph Gf induced by the subset of vertices {1t1, 2t2, 3t3} will look like the
following (Fig. 3):

 
1
 

t
 

1

 
2

 
t

 

2

 
3

 
t

 

3

Fig. 3.

Therefore, {{a∗1t1}, {a∗2t2}, {a∗3t3}} ⊆ M({a∗1t1 , a∗2t2 , a∗3t3}), and by Definition 5 {{1}, {2}, {3}} ≺ M .
Then according to Lemmas 1 and 2 there exists w ∈ W (M) such that Matr(w) is not absolutely
unimodular.

(2) Suppose that there exists i ∈ {1, 2, 3} such that for every j ∈ {1, 2, 3}\{i} it holds that
a∗ij ∈ fk, where k ∈ {1, 2, 3}\{i, j}. Without loss of generality we assume that i = 1, or else simply
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renumber the elements. Then a∗12 ∈ f3, a
∗
13 ∈ f2. By Lemma 4, a∗12 = a∗32, a∗13 = a∗23. By construc-

tion, a∗kl ∈ fk, a
∗
kl /∈ fl, l ∈ {1, 2, 3}\{k}, k ∈ {1, 2, 3}. Consequently, a∗kl 
= a∗lm, m,k ∈ {1, 2, 3}\{l},

l ∈ {1, 2, 3}. By construction, a∗12 ∈ f3, a
∗
13 /∈ f3, so a∗12 
= a∗13. By construction, a∗23 = a∗13 ∈ f1,

a∗21 /∈ f1, so a∗21 
= a∗23; a∗32 = a∗12 ∈ f1, a
∗
31 /∈ f1, so we get a∗31 
= a∗32. Further one of two subcases is

possible: either a∗21 = a∗31 or a∗21 
= a∗31.
(2.1) Let a∗21 = a∗31. Then the graph Gf will look like the following (Fig. 4):

 

12 21 31

13 23 32

Fig. 4.

This means that {{a∗12, a∗13}, {a∗13, a∗21}, {a∗12, a∗21}} ⊆ M({a∗12, a∗13, a∗21}), and by Definition 5
{{1, 2}, {1, 3}, {2, 3}} ≺ M . Then according to Lemmas 1, 2 there exists w ∈ W (M) such that
Matr(w) is not absolutely unimodular.

(2.2) Let a∗21 
= a∗31. Then the graph Gf will look like the following (Fig. 5):

 
12 21 31

13 23 32

Fig. 5.

Therefore, {{a∗12, a∗13}, {a∗13, a∗21}, {a∗12, a∗31}} ⊆ M({a∗12, a∗13, a∗21, a∗31}) and by Definition 5
{{1, 2}, {2, 3}, {1, 4}} ≺ M . Then, according Lemmas 1 and 2, there exists w ∈ W (M) such that
the matrix of system of constraints for problem w is not absolutely unimodular. This completes
the proof of the lemma.

Theorem 4. Let M ⊆ 2N(s). In order for the class W (M) to be t1|t2 − equal|t3 − edge reducible
to class WGraph, where t1(n), t2(n), t3(n) ≥ n, n ∈ N , it is necessary and sufficient that the set M
is 2-embedded.

Proof. Sufficiency automatically follows from Theorem 2.

Necessity proof. We argue by contradiction. Suppose that the class W (M) is t1|t2−equal|t3−edge
reducible to class WGraph, but the set M is not 2-embedded. Then, by Lemma 5, there exists a
problem w ∈ W (M) such that matrix Matr(w) is not absolutely unimodular. On the other hand,
Theorem 1 implies that matrix Matr(w) is absolutely unimodular. We get a contradiction, so our
original assumption was wrong. This completes the proof of the theorem.

By Theorem 4, the resulting 2-embeddedness condition is a necessary and sufficient condition of
the reducibility (according to our concept of reduction introduced above) of multiindex problems to
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min-cost flow problems. Moreover, it turns out that the reduction scheme for a class of multiindex
problems W (M) with a 2-embedded set M , proposed in the constructive proof of Theorem 2 and
having linear computational costs, is optimal in the sense that

—reductions with asymptotically sublinear computational costs are impossible since we need to
look through all input data;

—an arbitrarily large increase in the computational power available for the reduction does not
lead to extending the class of multiindex problems reducible to the class WGraph.

Thus, Theorems 2, 4 together represent an exhaustive answer to the study of t1|t2−equal|t3−edge
reducibility of classes of multiindex problems W (M) to the class of min-cost flow problems WGraph.

5. CONCLUSION

In this work, we have studied t1|t2 − equal|t3 − edge reductions of multiindex transportation
problems to the class of min-cost flow problems. This definition of a reduction has let us introduce
a relation between variables in the original problems and arcs in the auxiliary network. Here the
minimal cost flow in the auxiliary network also determines an optimal solution of the original
problem such that variables are assigned the value of the flow on the corresponding arcs of the
network.

We have distinguished a class of multiindex transportation problems with 2-embedded structure
which we have shown to be L|L− equal|L− edge reducible to the class of min-cost flow problems.
Based on this reducibility, we have constructed an algorithm for solving multiindex transportation
problems with 2-embedded structure. The algorithm in case of applying it to find min-cost flows
with Orlin’s method [27] has computational complexity O(|EN(s)|2 log2 |EN(s)|), where the value
|EN(s)| equals the number of variables in the multiindex problem. This algorithm is also applicable
for finding an integer-valued solution.

The main result of this work is the proof that the 2-embeddedness condition for a set M ⊆ 2N(s)

represents a necessary and sufficient condition for the t1|t2 − equal|t3 − edge reducibility of class
W (M) to class WGraph. This result generalizes reduction results shown previously in [1, 33] and
gives (for the considered reduction scheme) an exhaustive answer to the problem of reducibility
for a class of multiindex transportation problems to the class of min-cost flow problems. The
presented constructive algorithm for reducing a class of multiindex problems with 2-embedded
structure is optimal in the sense that reductions with asymptotically smaller computational costs
are impossible, and an arbitrarily large increase in the computational costs of the reduction will
not lead to extending the class of reducible multiindex problems.

Further studies may be related to specifying subclasses of multiindex problems reducible to
specific subclasses of min-cost flow problems for which more efficient algorithms are known (e.g.,
finding a flow in a tree network [38] or in a network with planar structure [39]). It is interesting to
develop new concepts of reduction that would allow to extend the applicability of flow algorithms
to solving multiindex problems.
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